Friday, July 12, 2024

4526 - EINSTEIN'S - ring of stars? -

 

-    4526  -  EINSTEIN'S   -  ring of stars?  -    The star-studded halo in the image is made up of light from a quasar.  This is a supermassive black hole at the heart of a young galaxy that shoots out powerful energy jets as it gobbles up enormous amounts of matter. This quasar is named RX J1131-1231 and is located around 6 billion light-years from Earth in the constellation Crater.


------------------------------------------  4526  -  EINSTEIN'S   -  ring of stars?

-

-    The James Webb telescope spies this 'Einstein ring' made of warped quasar light.  The warped quasar “RX J1131-1231”, is adorned with four bright spots birthed by mind-bending space-time trickery.

-

-    A beautiful, "bejeweled" halo of warped light generated by a monster black hole takes center stage in one of the latest James Webb Space Telescope (JWST) images. The luminous loop, which is strikingly similar to an "Einstein ring," is adorned by four bright spots, but,  not all of them are real.

-

-    The quasar's circular shape is the result of gravitational lensing, in which the light from a distant object such as a galaxy, quasar or supernova travels through space-time that has been curved by the gravity of another massive object located between the distant object and the observer.

-

-    As a result, light appears to bend around the middle object even though it is traveling in a straight line. In this case, the quasar is being lensed by a closer unnamed galaxy, which is visible as a blue dot in the center of the luminous ring.

-

-   Gravitational lensing also magnifies our view of extremely distant objects like RX J1131-1231, which would otherwise be almost invisible to us. This magnification effect can create bright spots in lensed objects, which shine like brilliant gemstones in a piece of jewelry, especially when the distant object is not perfectly aligned with the observer.

-

-   The orientation and appearance of  jewels around the ring tell us that they are mirror images of a single bright spot, which has been duplicated by the lensing effect.  Bright spot duplication is particularly common with warped quasars because these objects are some of the brightest entities in the universe. 

-

-    When the light from a distant, gravitationally-lensed object forms a perfect circle, it is known as an Einstein ring, so named because Albert Einstein first predicted the lensing effect with his theory of general relativity in 1915.

-

-    However, in this case, the light has not been perfectly lensed and the ring shape is mainly due to the duplication of the quasar's bright spot.

-

-    Einstein rings and other gravitationally lensed objects can help reveal hidden information about distant objects. For example, in 2014, researchers used the light from RX J1131-1231 to determine how fast its supermassive black hole was spinning.

-

-    The size and shape of gravitationally lensed objects also allow scientists to calculate the mass of their lensing galaxies. By comparing the value to the galaxy's emitted light, researchers can calculate how much dark matter, a mysterious type of matter that doesn't react with light but interacts gravitationally with normal matter, lies within these galaxies. As a result, these warped light shows may be our best tool for uncovering dark matter's secret identity. 

-

-

July 12, 2024               EINSTEIN'S   -  ring of stars?                       4526

------------------------------------------------------------------------------------------                                                                                                                       

--------  Comments appreciated and Pass it on to whomever is interested. ---

---   Some reviews are at:  --------------     http://jdetrick.blogspot.com ----- 

--  email feedback, corrections, request for copies or Index of all reviews

---  to:  ------    jamesdetrick@comcast.net  ------  “Jim Detrick”  -----------

--------------------- ---  Friday, July 12, 2024  ---------------------------------

 

 

 

 

 

           

 

 

No comments:

Post a Comment