- 4475 - PHOTON - what Einstein discovered. - Creating the Photon started with a simple experiment that was all the rage in the early 20th century. And as is usually the case, simple experiments often go on to change the world, leading Einstein himself to open the revolutionary door to the quantum world.
----------------------------------- 4475 - PHOTON - what Einstein discovered?
- You take a piece of metal for the
experiment. You shine a light on it. You
wait for the electrons in the metal to get enough energy from the light that
they pop off the surface and go flying out. You point some electron-detector at
the metal to measure the number and energy of the electrons.
-
- The bizarre thing about this experiment,
measuring what’s known as the “photoelectric effect”, is that the electrons
didn’t behave as they should. If light is made of waves of electricity and
magnetism, as Maxwell taught us, then the electrons should be able to slowly
accumulate energy until they get hot enough to go flying off, regardless of the
frequency of light.
-
- And brighter more intense light should lead
to more energetic electrons, because there’s more energy available. But neither
of those expected outcomes happen.
Instead, only light above a certain frequency could get electrons to
dance, and those electrons always left the metal with the same energy, no
matter how intense the light was.
-
- Einstein thought about this problem for a
shockingly short amount of time before coming up with an elegant solution. He reshaped our understanding of the physical
universe. He supposed that light itself
was quantized. In other words, what we perceive as sloshing, undulating waves
of electricity and magnetism is really, at a deeper, more fundamental level, a
flood of discrete, distinct, indivisible little bundles of light-stuff.
-
- Each one of these bundles represents the
smallest amount of light-stuff that you can possibly have. And because these
bundles are uncuttable, you cannot have fractional proportions of light-stuff.
You can have one unit of light-stuff, two units of light-stuff, and so on, but
never 2.56 units, or 23,347,12.223 units.
-
- Somehow these bundles, when enough of them
come together, conspire to behave as if they were waves of electricity and
magnetism, but once you picked those waves apart you would reveal their
particle-like nature.
-
- This neatly solved the problem with the
photoelectric effect. Electrons need a certain amount of energy to get away
from a metal. And that energy isn’t determined by the brightness or intensity
of the light, but in its frequency.
-
- Higher frequencies correspond to more
energetic photons. If the energy was too
low, the electrons could simply never escape the metal. And when the photon
strike the electrons, they deposit a specific, fixed amount of energy, no more,
no less, explaining why the electrons always escaped in the exact same way.
-
- Einstein’s discovery of photons would be
just one result in the growing awareness of the microscopic, quantum world. But
it would be an important one – and the one result for which he would ultimately
receive the Nobel prize – because it was the first to claim that an entity in
nature was really made of quantum particles.
-
-
May 20, 2024 PHOTON
- what Einstein discovered 4472
------------------------------------------------------------------------------------------
-------- Comments appreciated and Pass it on to
whomever is interested. ---
--- Some reviews are at: -------------- http://jdetrick.blogspot.com -----
-- email feedback, corrections, request for
copies or Index of all reviews
--- to:
------
jamesdetrick@comcast.net
------ “Jim Detrick” -----------
--------------------- --- Monday, May 20, 2024
---------------------------------
No comments:
Post a Comment